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Abstract

An accurate description of global tumbling of a protein is essential for correct analysis and interpretation of internal
dynamics and thermodynamics. The accurate fitting of global tumbling parameters is affected by the number of
experimental relaxation data points available for analysis, the distribution of data points over the domain of the
function describing the tumbling, the measurement error associated with the data, the error associated with use
of an approximate functional form, and errors in the protein structure. We present an analysis of the influence of
these factors on the error in global tumbling parameters and the corresponding error in the calculated T1/T2 values.
We find that reduction of experimental and approximation error can compensate for a less-than-ideal quantity
or distribution of data points, and that accurate parameters can be obtained for proteins with highly anisotropic
distributions of bond vectors, as illustrated using the helical bundle protein G-CSF. This indicates that proteins
with anisotropic distributions, such as the helical bundle class of proteins, should not summarily be excluded when
selecting proteins for dynamic and thermodynamic analyses of 15N backbone relaxation measurements.

Abbreviations: NORMAdyn, NMR Optimized Relaxation Modeling with Anisotropy, for dynamics analysis.

Introduction

15N spin relaxation parameters have been widely
used to characterize the motions of individual back-
bone N-H bonds within proteins, and have provided
a powerful tool for probing the internal dynamics
of proteins. In addition, it is increasingly common
to quantitatively interpret protein dynamics in terms
of thermodynamic parameters (Wand, 2001). Proper
evaluation of site-specific internal motions and ther-
modynamic parameters requires careful consideration
of a number of issues, including spectral overlap (Viles
et al., 2001), anisotropic global tumbling (Osborne
and Wright, 2001) and correlation between global and
internal motions (Prompers and Bruschweiler, 2000;
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Tugarinov et al., 2002). For a standard model-free type
of analysis (Lipari and Szabo, 1982; Mandel et al.,
1995), once data processing is complete, the criti-
cal step is the separation of contributions from global
and internal motions to the relaxation parameters. The
key to this separation is an accurate description of
the rigid body global tumbling of the protein. It has
been widely recognized that correct characterization
of global tumbling is hampered by the difficulty in
distinguishing between the effects of anisotropy and
conformational exchange on measured transverse re-
laxation rates (Tjandra et al., 1995; Schurr et al. 1994;
Kroenke et al., 1998; Mandel et al., 1996; Andrec
et al., 1999; de Alba et al., 1999), and a variety of
methods for addressing this difficulty have been pro-
posed (Kroenke et al., 1998; Tjandra et al., 1996;
Osborne and Wright, 2001; Bernado et al., 2002;
Pawley et al., 2001).
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Accurate characterization of any function is af-
fected by the number of available data points, their
distribution across the domain of the function, the
measurement error in the data points, and error as-
sociated with the use of an approximate functional
form. The effect of these factors on reliability of tensor
parameters in solid-state NMR and sampling strate-
gies for spin-spin relaxation times have been explored
(Hodgkinson and Emsley, 1997; Jones et al., 1996).
For accurate characterization of a diffusion tensor us-
ing 15N spin relaxation measurements, these factors
translate to: number of N-H bond vectors, orienta-
tional distribution of N-H bond vectors, measurement
error in T1 and T2 data, and use of the approximation
that T1/T2 is unaffected by fast internal motions.

The effects of number and orientational distribu-
tion of bond vectors have been examined by others
(Fushman et al., 2000, Lee et al., 1997), and by our
own work (Pawley et al., 2001). It has been shown
that when residues aligned with the unique axis of
diffusion are removed from the data set used to deter-
mine the global tumbling, the result is skewed toward
a more isotropic fit, since these residues hold the most
information regarding the effects of anisotropic dif-
fusion (Kroenke et al., 1998; Pawley et al., 2001).
It has also been shown that simultaneous analysis of
13Cα and 15N relaxation rate constants can improve the
reliability of global tumbling parameters (Lee et al.,
1997) by increasing the number of bond vectors avail-
able for analysis and improving the distribution of
orientations. The effects of incomplete sampling of
orientation space on determination of a second-rank
tensor have been described (Fushman et al., 2000).
In addition, it has been suggested that for accurate
determination of global tumbling, the ideal distribu-
tion of bond vectors in a protein is isotropic in space,
and that highly anisotropic distributions, such as those
found in an α-helical bundle, will be unsuitable for ac-
curate characterization of global tumbling parameters
(Fushman et al., 2000).

We explore the effects of various bond vector dis-
tributions, errors, and sample sizes, on the accuracy of
model parameters using both theoretical distributions
of bond vectors, and a distribution obtained from a
helical bundle, G-CSF (1rhg, (Hill et al., 1993)). Us-
ing the theoretical distributions we demonstrate that,
in some cases, anisotropic distributions of bond vec-
tors can yield more accurate tumbling parameters than
an isotropic distribution. Using the actual N-H bond
vector distribution of G-CSF we demonstrate that even
highly anisotropic distributions such as those found in

helical bundle proteins can be quite suitable for ac-
curate characterization of global tumbling parameters.
Returning to the theoretical distributions, we explore
methods for increasing the accuracy of calculations
for less-than-ideal distributions. Finally, we examine
the differential impact of errors in the structure on the
accuracy of model parameters for the four theoretical
distributions of bond vectors.

Materials and methods

Overview

Synthetic data sets were constructed to address four
specific questions:
(1) Is an isotropic distribution of bond vectors ideal for

extracting accurate global tumbling parameters?
(2) Can accurate global tumbling parameters be deter-

mined for highly anisotropic distributions?
(3) How is accuracy affected by measurement error?
(4) How is accuracy affected by approximation error?

The characteristics of the data sets used to address
these questions are outlined in Table 1, and are de-
scribed in detail below. Data sets were constructed
for all combinations in Table 1 (with the exception
that 3.5% measurement error was not combined with
small (τf < 20 ps) approximation error) yielding 48
total combinations of theoretical distributions. Data
sets mimicking G-CSF were analyzed for 9 different
diffusion tensor orientations (vide infra).

For each data set, 500 subsets were generated by
varying the internal motion parameters, bond vector
orientations, and individual measurement errors, ac-
cording to the appropriate distribution function (vide
infra). Averaging over the subsets avoids bias that
might be associated with a particular set of S2, τf ,
α and error values. Noise-free values of T1 and T2
were calculated from the ‘true’ global tumbling pa-
rameters and randomly generated internal parameters
of motion and bond vector orientations, then adjusted
by an estimated noise factor. Once a synthetic data
set was generated (vide infra), it was analyzed as if
it were an experimental data set. Global tumbling pa-
rameters were extracted and compared with the ‘true’
parameters to determine the accuracy of the fits.

Construction of synthetic parameters of motion

A prolate, axially symmetric, anisotropic model of
global tumbling was assumed. For the theoretical
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Table 1. Characteristics of synthetic data sets

Distribution Number of vectors Measurement error Approximation errora

(Ntot) (ps)

Theoretical

Nbounce(α)

Nconst.(α) 20, 50, 100, 200 2.5% or 3.5 % τf < 600 or τf < 20

Ncos(α)

Nsin(α)

G-CSF mimic 112 2.5% τf < 600

aError resulting from assuming that data is unaffected by fast internal motions, τf , vide
infra.

distributions, the principal axes of the diffusion ten-
sor were set to D⊥ = 0.009 (ns−1) and D|| =
0.018 (ns−1) to represent a relatively high degree of
anisotropy (D||/D⊥ = 2.0) that would potentially be
misinterpreted if not properly characterized (Osborne
and Wright, 2001). For the G-CSF mimic, D⊥ and
D|| were set to the experimentally determined values
(Fushman et al., 2000; Lee et al., 1997) D⊥ = 0.012
(ns−1), D|| = 0.016 (ns−1). To generate a single data
set, Ntot pairs of S2 and τf values were randomly
drawn from the following distribution functions:
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where �i (i = 1,2) normalizes the probability, H(x) is
the Heaviside step function, S2

0 = 0.85, σS = 0.15,
τ0 = 0.03 ns, στ = 0.03 ns, τcutoff = 0.6 ns for
PGauss,τf (large allowable τf values lead to large ap-
proximation error) and τcutoff = 0.02 ns for Pconst.,τf

(small approximation error). Values of τf > 0.6 ns
were not considered, nor were any contributions from
chemical exchange (Rex), nor were any values result-
ing in nOe < 0.65, since residues with relaxation rates
significantly influenced by internal motions are as-
sumed to be removed by data filtering (Tjandra et al.,
1996; Pawley et al., 2001; Kneller et al., 2002).

Construction of synthetic bond vector distributions

The angles, α, of the individual N-H bond vectors
relative to the unique axis, z, of the diffusion tensor
were randomly drawn from the following distribution
functions using standard methods (Press et al., 1996):
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where H(x) is the Heaviside step function, θ0 is
the magic angle (defined by θ0 = cos−1

(√
1/3

)
),

and the constant, B = 0.6, determines the rela-
tive contributions from the sin and cos components
of Nbounce(α). The distributions are not normalized;
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rather, they integrate to Ntot, where Ntot varies from
20 to 200, as described in Table 1. The orientation
of N-H bond vectors in the x–y plane were randomly
drawn from a distribution of the form Pconst. (φ) =
2
π

[
H (φ) − H

(
φ − π

2

)]
, resulting in an axially sym-

metric distribution of bond vectors. Only angles be-
tween 0 and π/2 are considered, due to the inherent
symmetries of the problem (the relaxation rates de-
pend only on the square of the bond vector compo-
nents). These distributions were used for calculation
of the synthetic relaxation data, as described below. In
order to demonstrate the process of finding the correct
diffusion tensor orientation, bond vectors were rotated
out of the diffusion tensor frame, after the creation
of the relaxation data, into a starting reference frame
using Euler rotation matrices (R(ψ, θ,φ) as defined in
Arfken (1985), where ψ, θ, and φ define the relative
orientation of the two frames, and ψ is defined to be
zero for an axially symmetric diffusion tensor).

Construction of synthetic relaxation data

Values of T1 and T2 were calculated from the para-
meters of global and internal motion using standard
equations (Woessner, 1962; Tjandra et al., 1996; Lee
et al., 1997). The effects of measurement error were
simulated by the addition of the Gaussian-distributed
random variables δT 1 and δT 2. These random variables
were drawn from a Gaussian distribution with a width
(i.e. standard deviation) of 2.5% × Ti or 3.5% × Ti , to
reflect the expected percent error in experimental data.
When included, the effects of errors in the structure
(i.e., errors in bond vector orientation) were simulated
by the addition of Gaussian-distributed error of width
5 degrees (Skrynnikov et al., 2000).

Calculation of global tumbling parameters and errors

For each set of input data (i.e., a given vector dis-
tribution, Ntot, diffusion tensor orientation, and error
size, summarized in Table 1) errors in global tum-
bling parameters were estimated by averaging over
500 subsets, each constructed from a different set of
internal motions and bond vector orientations, selected
from the appropriate distributions described above.
This approach avoids bias associated with a particu-
lar set of internal motions and specific orientations.
Global tumbling parameters for each subset were de-
termined using NORMAdyn, as described in Pawley
et al., (2001) with two exceptions. First, data was
treated as ‘post-filter’ and filtering steps were not ap-
plied, since chemical exchange and large amplitude

motions were not included when generating the data
sets. Second, simulated annealing was performed only
for the first of the 500 subsets in each data set. To re-
duce the computational expense of the remaining 499
subsets, a random jump away from the previous min-
imum was taken in each of the four dimensions (D⊥,
D||, θ, φ), followed by conjugate gradient minimiza-
tion. The random jump avoids initial condition bias for
distributions in which insufficient sampling causes the
solution space to be degenerate (i.e., the slope of χ2

is zero along a particular direction), and was found to
yield the same results as the more expensive simulated
annealing protocol.

The following measures are used to describe the
quality of a fit:

The F-statistic is a measure of how much addi-
tional fitted parameters associated with a given model
improve χ2, the ‘goodness of fit’ (Bevington and
Robinson, 1992; Lee et al., 1997).

Fn−m,N−n =
(
χ2

N−m − χ2
N−n

)
(N − n)

χ2
N−n (n − m)

and

χ2
N−m =
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i=1
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T
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2,i

σi




2

,

where calc denotes the values calculated by fitting the
model parameters, synth denotes the synthetic values
(experimental values determined in silico), N is the
number of data points (i.e., N-H bond vectors), n

and m are the number of fitted parameters associated
with each model (n > m), and σi is the error in the
synthetic value of T1/T2. For an isotropic tumbling
model, m = 1. For an axially symmetric tumbling
model, n = 4. εd is a measure of the error in the prin-
cipal values of the diffusion tensor (Fushman et al.,
2000). For axially symmetric global tumbling,

εd = 100

√√√√√ 2

3

(
Dcalc⊥ − Dtrue⊥

Dtrue⊥

)2

+ 1

3

(
Dcalc|| − Dtrue||
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)2

,

εa is a measure of the error in the orientation of the
diffusion tensor (Fushman et al., 2000).

εa = 100


1 −

Trace
∣∣∣Rcalc (ψ′, θ′,φ′)Rtrue (ψ′, θ′,φ′)T ∣∣∣

3


 .

When the calculated orientation of the unique
axis of the diffusion tensor is orthogonal to the true
orientation, εa = 100.
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χ̃is a measure of the error in the calculated values
of T1/T2:

χ̃ =
αi=90∑
αi=0

[
T calc

1 (αi )

T calc
2 (αi )

− T true
1 (αi )

T true
2 (αi )

] 2

.

An approximate scale for χ̃can be obtained rela-
tive to the average value of T1/T2, which is protein
dependent, varying with D||, D⊥, S2 and τf . For the
theoretical distributions, using D⊥ = 0.009 (ns−1),
D|| = 0.018 (ns−1), S2 = 0.85, τf = 30 ps,
(calc − true)2/(σ · true)2 ≈ 1 when χ̃ = 63, where
calc represents the calculated value of T1/T2, true rep-
resents the value of T1/T2 determined from error-free
parameters, and σ represents the size of the synthetic
error in T1/T2 (σ = 0.035 for 2.5% error in T1 and
T2). For the G-CSF distributions, using D⊥ = 0.012
(ns−1), D|| = 0.016 (ns−1), S2 = 0.85, τf = 30 ps,
(calc − true)2/(σ · true)2 ≈ 1 when χ̃ = 30.

Finally, the generalized sampling parameter, �, is
defined as in Fushman et al. (2000)

� = 2

3

∑
i,j=x,y,z

3
〈
rirj

〉− δij

2
,

where ri is the projection of a given unit vector r on
the axis i (in an arbitrary reference frame) and δij is the
Kronecker delta. � is used to quantify the distribution
of vector orientations on a scale from 0 to 1. For a
uniform distribution of vectors � = 0; if all vectors
are aligned, � = 1.

Results and discussion

Revisiting the isotropic distribution of bond vectors

It has been suggested (Fushman et al., 2000; Lee
et al., 1997) that a set of N-H bond vectors uniformly
distributed in space (� ∼ 0) is ideal for accurate char-
acterization of global tumbling parameters. Largely
as a consequence of this suggestion, it has also been
proposed that highly anisotropic distributions (� >

0.25), such as those found in a helical bundle (e.g.,
G-CSF, � = 0.49), will be unsuitable for accurate
characterization of global tumbling parameters.

In order to examine the effects of bond vector dis-
tribution, four specific distributions were created and
analyzed. The bond vector orientations for each distri-
bution are shown over the first octant of a unit sphere
in Figure 1a. These distributions can also be visual-
ized as function of α, as shown in Figure 1b. For each

distribution, the effects of varying Ntot, measurement
error, and approximation error were evaluated as de-
scribed (vide supra). The quality of the fits is shown in
Figure 2.

The F-statistic (Figure 2a) is used to assess
whether use of an axially symmetric diffusion tensor
provides a significant improvement in the fit relative to
isotropic diffusion. Large values of F indicate signifi-
cant improvement. While axially symmetric tumbling
is the correct model for all points in Figure 2a, data
sets with few data points (Ntot = 20) and data sets
with an isotropic distribution of bond vectors (Nsin(α))

display lower F-statistics than data sets with more data
points or anisotropic distributions of bond vectors.
In both cases, the cause of the decreased F-statistic
(lower significance) is due to insufficient sampling of
the axially symmetric functional form.

The error in the principal values of the diffusion
tensor, the orientation of the diffusion tensor and the
estimated T1/T2 values are shown in Figures 2b–d. For
all three measures, the error decreases with increasing
Ntot. For all three error measures, and all values of
Ntot, the error is largest for the Nsin(α) distribution,
i.e., for an isotropic distribution of N-H bond vector
orientations. The error in the principal values of the
diffusion tensor (εd , Figure 2b) and in the estimated
T1/T2 values (χ̃, Figure 2d) is smallest for Nbounce(α)

at all values of Ntot. This implies that the error in
estimated T1/T2 values is dominated by the error in
the principal values of the diffusion tensor, since the
error in orientation of the diffusion tensor follows a
different pattern (εa , Figure 2c). The distribution with
the smallest error in the orientation of the diffusion
tensor varies with Ntot. In summary, the results in
Figure 2 illustrate that, by every measure, the worst
distribution (largest error, smallest F-statistic) was the
isotropic distribution (Nsin(α), � = 0.02). Overall, the
best distribution was Nbounce(α), � = 0.38. It is clear
that a uniform distribution in space is not the ideal
distribution of bond vectors for obtaining an accurate
description of global tumbling.

These results are most easily explained by exam-
ining the functional form to which data is being fit,
as shown in Figure 3. Nbounce(α) places the largest
number of vectors (data points) at the extrema of the
function, and in the regions where the value of T1/T2
for an anisotropically tumbling protein differs most
strongly from the value of T1/T2 for an isotropically
tumbling protein (thick dashed line in Figure 3). In
contrast, Nsin(α) places very few vectors at the α =
0 extremum, where T1/T2 differs most strongly be-
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Figure 1. Synthetic bond vector distributions. (a) Distributions are shown as points on a unit sphere, with each point on the surface of the
sphere representing the tip of a vector. The orientation of the coordinate axes and bond vectors is given with respect to the ‘diffusion frame’.
Only the first octant is shown. (b) The relative numbers of vectors (N) for each distribution are shown as a function of α, the angle between an
N-H bond vector and the unique axis of the diffusion frame.

tween isotropically and anisotropically tumbling pro-
teins. In summary, the performance of the distributions
from best to worst is Nbounce(α), Nconst.(α), Ncos(α),
Nsin(α). The excellent performance of Nbounce(α) and
Nconst.(α) suggests that placing the largest number of
points at the extrema is most advantageous, and a
slight advantage is gained by emphasizing the α =
0 extremum, as indicated by the smaller errors for
Nbounce(α) versus Nconst.(α). When data is available
at only one extremum, as for Ncos(α) and Nsin(α), an
advantage is still gained by emphasizing the α = 0 ex-
tremum, as indicated by the smaller errors for Ncos(α)

versus Nsin(α).

Accurate global tumbling parameters can be
determined for highly anisotropic distributions

The distribution that is isotropic in space has the ad-
vantage that, while it is not the best, it is consistent.
That is, the behavior of this distribution is the same,
regardless of the orientation of the molecular frame
with respect to the diffusion tensor. In contrast, the be-
havior of other distributions can change, depending on
the relative orientation of the molecular and diffusion

frames (Figure 5). Hence, an anisotropic distribution
of bond vectors may perform well in one orientation,
but not in another.

In order to explore the effects of orientation on
the extraction of global tumbling parameters for an
anisotropic distribution of vectors, synthetic data sets
were created based on the distribution of bond vec-
tors in G-CSF (Figure 4a; Hill et al., 1993) and its
global tumbling parameters, as reported by Lee et al.
(1997). The distribution of G-CSF bond vectors in the
molecular (inertia) frame is depicted on the surface of
a unit sphere in Figure 4b, and in a bar graph in Fig-
ure 4c. If the diffusion tensor is assumed to coincide
with the inertia frame, this distribution has the largest
number of bond vectors at α < 45 deg (i.e., they
lie close to the unique axis of the diffusion tensor).
In contrast, the experimentally determined orientation
of the diffusion tensor with respect to the molecular
frame yields θ = 77◦, which places the largest num-
ber of bond vectors perpendicular to the unique axis
of the diffusion tensor (as in highlighted distribution,
Figure 5a). What size errors would we expect in the
calculated parameters for this distribution, and how
would the size of the errors change if the orientation
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Figure 2. Effects of number and distribution of N-H bond vectors on calculated dynamic parameters. Statistics are computed for four distri-
butions of N-H bond vectors. The number of data points in each distribution varies from 20 to 200. Reported values include the effects of
2.5% measurement error and large (τf < 600 ps) approximation error. Reported values are the average over 500 data sets. Error bars are
calculated from the standard deviation over 500 data sets. In general, the number of N-H bond vectors, Ntot, more strongly affects the accuracy
of the calculation than the particular distribution. Overall, Nbounce(α) provides the most accurate estimate of global tumbling parameters, while
Nsin(α) provides the least accurate estimate. (a) The F-statistic (isotropic model vs. axially-symmetric anisotropic model). (b) εd , the error in
the principal values of the diffusion tensor. (c) εa , the error in the orientation of the diffusion tensor. (d) χ̃, the error in the calculated values of
T1/T2. Note that χ̃ > 63, the value for which (calc − true)2/(σ · true)2 ≈ 1, for Ntot = 20, but χ̃ < 63 for all Ntot � 50. χ̃ is more strongly
affected by errors in the principal values of the diffusion tensor (εd ) than by errors in the orientation of the diffusion tensor (εa).
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Figure 3. Dependence of functional form and synthetic distributions on α. (a) Thick lines show T1/T2 as a function of α, for D||/D⊥ = 2
(solid) and D||/D⊥ = 1 (dashed, isotropic tumbling). Note that the effect of anisotropic tumbling is more readily apparent in the T1 and
T2 values of residues with α ≈ 0◦ than in residues with α ≈ 90◦. Thin lines show Nbounce(α) (dashed) and Nsin(α) (dotted). Nbounce(α)

places a larger number of data points at both extrema of the function, with more points in the region where anisotropic tumbling differs most
significantly from isotropic tumbling. Nsin(α) places a large number of points at only one extremum of the function, with few points in the
region where anisotropic tumbling differs most significantly from isotropic tumbling. (b) Ellipsoid corresponding to a prolate diffusion tensor
showing an N-H bond vector at an arbitrary angle, α, from the principal axis of diffusion.

of the diffusion tensor were altered with respect to the
molecular frame? To answer this question, the orien-
tation of the diffusion frame was rotated in discrete
steps with respect to the molecular frame to produce
the distributions shown in Figure 5a. While changes
in orientation affect the accuracy of the parameters, the
errors are small (εd and εa < 1.6%, χ̃ < 16) for all
orientations considered here (Figure 5b) and fall in the
expected range for the number of available data points,
Ntot = 112 (Figures 2b–d). In other words, although
different distributions over α result from different rela-
tive orientations of the molecular and diffusion frames,
even in the worst observed case (i.e., distribution max-
imum at 90◦) the errors remain small. The conclusion
is that even a highly anisotropic distribution, such as
that found in the helical bundle, G-CSF, can indeed be
suitable for accurate global tumbling analysis.

Increasing the accuracy of calculations for
less-than-ideal distributions

In a PDB survey by Fushman et al. (2000) 85.7%
of proteins surveyed were found to have acceptable
(i.e., sufficiently isotropic) distributions of N-H bond
vector orientations for accurate global tumbling analy-
sis. We have demonstrated that this is the minimal set
of acceptable proteins, since anisotropic distributions
(� > 0.25) may also yield accurate global tumbling

parameters. Nevertheless, it is quite likely that dis-
tributions exist that are far from ideal, that would
potentially cause difficulty in the analysis of global
tumbling.

When data is limited, it is important to maximize
the information content of each data point by maxi-
mizing the signal to noise ratio. Two types of noise
(error) are easily addressed: Measurement error and
approximation error. Measurement error is affected by
a host of factors, including pulse calibration, sample
concentration, number of scans performed, number
of points sampled to determine the exponential decay,
spectral overlap, intrinsic linewidths, and use of a cry-
oprobe. In a positive sense, this provides many points
of intervention at which measurement error can be
reduced. The quality of fits for our theoretical distribu-
tions, with measurement errors of 3.5% and 2.5% (i.e.,
3.5% /

√
2) is shown in Figure 6. In all cases consid-

ered here, the benefit of decreasing the measurement
error by

√
2 is equivalent to the benefit of increas-

ing the number of data points by ∼ 75–90%. Note
that this increase in data points is accompanied by
increased sampling of orientational space. This result
can be used to help guide experimental cost-benefit-
analyses. For example, it has been proposed (Lee
et al., 1997) that non-ideal distributions be improved
by simultaneous analysis of 15N and 13Cα relaxation.
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Figure 4. Structure and bond vector distribution of G-CSF. (a) The structure of G-CSF (1rhg) is shown oriented in the moment of inertia frame.
N-H bond vectors are shown as dotted lines. (b) The distribution of bond vectors in alpha helices is shown as points on a unit sphere. (c) The
distribution of bond vectors in alpha helices shown as a function of αI, where αI is the angle between an N-H bond vector and the unique axis
of the inertia frame.

While this can indeed provide improvement, there are
several drawbacks to this approach. First, the process
is both time-consuming and expensive, requiring addi-
tional relaxation experiments and isotopic enrichment
of the protein with 13C. Second, direct fitting of T1/T2
data is difficult if measurements are made for different
nuclear species, since the functions depend explic-
itly on the Larmor frequencies of the nuclear spins.
The local diffusion approximation, which would allow
one to work around this difficulty, breaks down for
large anisotropy (Lee et al., 1997). Third, while this
method will always increase the number of available
data points, it will not always improve the range of
sampled orientations. In particular, addition of 13Cα

relaxation is not expected to improve the bond vector
distribution for proteins with predominantly β-sheet
secondary structure (Fushman et al., 2000). Finally,
the measurement uncertainties tend to be larger (by a
factor of ∼ 2) for 13Cα relaxation data than for 15N
relaxation data. Consequently, a single 13Cα data point
typically contains less information than a single 15N

data point. Hence, knowledge of the distribution of
13Cα−1Hα vectors with respect to the N-H vectors, the
resolution of the 13C NMR spectrum, and the expected
effort required to acquire and analyze the 13Cα relax-
ation data can be weighed against the expected effort
required to decrease the measurement error for N-H
bond vectors alone.

Approximation error results from fitting experi-
mental values of T1/T2 to a functional form which
assumes that the ratio is unaffected by fast internal
motions, τf . The expected deviation from this approx-
imate form varies with the amplitude and time scale of
the internal motion, as illustrated in Figure 7a. When
internal motions reduce the values of T1/T2, but are
ignored in the fitting, the global tumbling parameters
must compensate, introducing systematic error. The
primary means of removing this error is to fit the data
using only those residues that are largely unaffected
by τf (τf < 20 ps, Model 1 as described by Man-
del et al., 1995). This certainly reduces the noise, but
unfortunately reduces the signal as well. In our expe-
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Figure 5. G-CSF bond vector distributions and errors in calculated tumbling parameters. (a) The orientation of the diffusion tensor was rotated
with respect to the molecular frame to obtain the N-H bond vector distributions (with respect to the diffusion tensor) shown. Rotations were
chosen to generate maximal sampling in each 10 deg bin between 0 and 90 deg. Insufficient surface area is subtended between 0 and 10 deg
to obtain maximal sampling in this region. The rotations used to generate the distributions were, from left to right, θ = 165◦, θ = −30◦,
θ = 20◦, θ = 30◦, θ = 45◦, θ = 55◦, θ = 60◦, θ = 75◦ (highlighted), θ = 90◦; φ = 45◦ for all. The orientation of the diffusion tensor
calculated by Lee et al. (θ = 77 deg) closely corresponds to the orientation (θ = 75 deg) used to generated the highlighted distribution with
maximal sampling at 90 deg. (b) Statistics computed for the nine distributions. Reported values include the effects of 2.5% measurement error
and large (τf < 600 ps) approximation error. Reported values are the average over 500 data sets. Error bars are calculated from the standard
deviation over 500 data sets. The error measures are small for all orientations considered here. (εd and εa < 1.6%, χ̃ < 30, the value for which
(calc − true)2/(σ · true)2 ≈ 1.)

rience, the number of residues that fit this criterion is
relatively small. How much signal can be sacrificed to
reduce the noise, and still produce the desire outcome
of increased accuracy? To address this question we
re-created our synthetic data sets, using values of τf

restricted to the range 0 < τf < 20 ps (vide supra).
The quality of fits for the two types of synthetic data
(τf < 600 ps, simulating current filtering as applied
by NORMAdyn, or τf < 20 ps, simulating use of
only residues that fit Model 1) are compared in Fig-

ure 7b. Fitting Model 1 residues only is unlikely to
be helpful for small proteins. For example, for a 50
residue protein, the cost of removing signal outweighs
the benefit of reducing the approximation error when
as few as ∼10 residues are removed. In contrast, this
could be a helpful strategy for very large proteins (e.g.,
200 residues), in which the benefit of reducing the ap-
proximation error outweighs the cost of removing up
to ∼100 residues.
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Figure 6. Effects of measurement error on dynamics calculations. The error in estimated T1/T2 is calculated using two sets of measurement
error for four distributions of N-H bond vectors. The number of data points in each distribution varies from 20 to 200. Reported values include
the effects of large (τf < 600 ps) approximation error. Reported values are the average over 500 data sets. For all four distributions, a

√
2

decrease in measurement error is equivalent to an increase in data points of ∼ 75–90%.

If the experimental data can not uniquely deter-
mine the diffusion tensor for a given protein, theoreti-
cal options remain. The rotational diffusion tensor can
be predicted from the protein structure using hydrody-
namic calculations, as implemented in HYDRONMR
(Bernado et al., 2002; de la Torre et al., 2000; de
la Torre, 2001) or COPED (Osborne and Wright,
2001). These programs have been used to identify
residues undergoing ns or µs-ms internal motions,
based on a comparison between experimental relax-
ation data and estimated relaxation data calculated
from global tumbling parameters. For proteins with
sub-optimal distributions of bond vectors, the global
tumbling parameters obtained from these programs
could be used to complement analysis of experimental
relaxation data, providing initial parameter estimates,

constraints, or confirmation of results (Osborne and
Wright, 2001).

Changes in the accuracy of calculations upon
inclusion of errors in structure

Very recently, Zweckstetter and Bax reported the ef-
fects of errors in the structure on the accurate de-
termination of alignment tensors (Zweckstetter and
Bax, 2002). Here, we briefly examine the effect of
structural error on the accurate determination of diffu-
sion tensors. The four theoretical distributions shown
in Figure 1 were employed to examine these effects
for bond vector distributions of varying anisotropy.
The quality of the fits was evaluated for inclusion of
5◦ structural error, which is generally a reasonable
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Figure 7. Effects of approximation error on T1/T2 values and estimated T1/T2 values. (a) The approximation used in fitting is depicted by
the S2 = 1 line. The expected deviation from this form varies with the amplitude and time scale of the internal motion, as illustrated by the
S2 = 0.95 and S2 = 0.9 curves. Current filtering techniques are expected to remove residues with deviations in T1/T2 greater than ∼10% from
the approximate value (Pawley et al., 2001). (b) The error in estimated T1/T2 is calculated for four distributions of N-H bond vectors using two
sets of approximation error (τf < 600 ps, simulating current filtering as applied by NORMAdyn, or τf < 20 ps, simulating use of residues
that fit Model 1 only). The number of data points in each distribution varies from 20 to 200. Reported values are the average over 500 data sets,
and include the effects of 2.5% measurement error.
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representation of experimental errors in bond vector
orientations (Zweckstetter and Bax, 2002). The results
are shown for each distribution at four values of Ntot in
Figure 8. Comparison of Figure 8 and Figure 2 shows
the changes in fit quality resulting from the inclusion
of structural errors. As expected, this additional source
of error decreases F, while increasing the error in the
principal values of the diffusion tensor, the orienta-
tion of the diffusion tensor, and the error in estimated
T1/T2. In accordance with the results of Zweckstetter
and Bax on determination of the alignment tensor, we
find that the increase in error in the principal values
of the diffusion tensor is directional: the inclusion of
structural error results in underestimation of the dif-
fusion tensor (Figure 1, Supplemental Information).
While the isotropic distribution (Nsin(α), � = 0.02)
remains the worst overall (Figure 8d, χ̃), for very large
numbers of data points (Ntot > 100), inclusion of
structural error causes a change in the best observed
distribution, from Nbounce(α) to Nconst.(α).

The sensitivity of each distribution to the addition
of structural error is shown in Figure 9. The error
in the principal values of the diffusion tensor (Fig-
ure 9a, εd) is relatively unaffected by the inclusion of
structural error for the Nconst.(α) distribution, and is
most affected by structural error for the Nsin(α) dis-
tribution. The error in the orientation of the diffusion
tensor (Figure 9b, εa) is noticeably affected by the
inclusion of structural error for all distributions, and
the increase in error is largest for the Nbounce(α) dis-
tribution. The error in estimated T1/T2 (Figure 9c, χ̃)

increases most sharply for the Nsin(α) distribution, fol-
lowed by the Nbounce(α) distribution. The increase in χ̃

observed for Nconst.(α) and Ncos(α) upon the addition
of structural error is very similar to the increase ob-
served upon change in measurement error from 2.5%
to 3.5% (for Nconst.(α), Ntot = 200, �χ̃ = 6.5 and

Figure 8. Effects of structural error on accuracy of calculated dy-
namic parameters. Statistics are computed for four distributions of
N-H bond vectors: Nsin(α) (pink squares), Ncos(α) (yellow trian-
gles), Nconst.(α) (blue diamonds) and Nbounce(α) (cyan circles),
as in Figure 2. The number of data points in each distribution
varies from 20 to 200. Reported values include the effects of 2.5%
measurement error, large (τf < 600 ps) approximation error, and
5◦ structural error. Reported values are the average over 500 data
sets. Error bars are calculated from the standard deviation over 500
data sets. (a) The F-statistic (isotropic model vs. axially symmetric
anisotropic model). (b) εd , the error in the principal values of the
diffusion tensor. (c) εa , the error in the orientation of the diffusion
tensor. (d) χ̃, the error in the calculated values of T1/T2. Note that,
in general, χ̃ < 63 for Ntot � 50. For the Nsin(α) distribution,
χ̃ < 63 for Ntot > 100.
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Figure 9. Sensitivity of theoretical distributions to the addition
of structural error. Error measures in the absence of structural
error (squares), and in the presence of 5◦ structural error (dia-
monds), are compared for the four distributions Nconst.(α), Nsin(α),
Ncos(α), Nbounce(α). Values are shown for Ntot = 200. Reported
values include the effects of 2.5% measurement error and large
(τf < 600 ps) approximation error. Reported values are the average
over 500 data sets. Error bars are calculated from the standard devia-
tion over 500 data sets. (a) εd , the error in the principal values of the
diffusion tensor. Values of εd increase most sharply for Nsin(α), and
increase only marginally for Nconst.(α). (b) εa , the error in the ori-
entation of the diffusion tensor. Values of εa increase most sharply
for Nbounce(α). (c) χ̃, the error in the calculated values of T1/T2.
Values of χ̃ increase most sharply for Nsin(α) and Nbounce(α).

6.6, respectively; for Ncos(α), Ntot = 200, �χ̃ = 5.4
and 5.7, respectively). In other words, the benefit of
decreasing the measurement error by

√
2 is similar

in size to the benefit of removing error in the struc-
ture for Nconst.(α) and Ncos(α), and is significant for
Nbounce(α) and Nsin(α).

As noted in Materials and methods section, an
error scale for χ̃ can be set by observing when
(calc − true)2/(σ · true)2 ≈ 1. For the theoretical dis-
tributions, (calc − true)2/(σ·true)2 ≈ 1 when χ̃ = 63.
Examination of Figure 8c shows that reasonably accu-
rate estimates of T1/T2 can be obtained for Nconst.(α),
Nbounce(α) and Ncos(α) when Ntot � 50, and for
Nsin(α) when Ntot > 100.

Conclusions

The accurate description of protein dynamics and ther-
modynamics requires an accurate description of global
tumbling, since this tumbling dominates relaxation
rates in proteins. Based on the assumption that the best

accuracy is obtained for proteins in which the distrib-
ution of bond vectors used in the relaxation analysis is
isotropic in space, it has been estimated that approx-
imately 15% of proteins are likely to yield inaccurate
tumbling parameters (Fushman et al., 2000). Accurate
determination of the diffusion tensor is expected to be
limited to distributions with values of � < 0.25.

In contrast, we have demonstrated here that
anisotropic distributions of bond vectors do not nec-
essarily yield inaccurate tumbling parameters, and, in
some cases, may yield more accurate parameters than
the isotropic distribution. In particular, three of the
five distributions presented herein correspond to � >

0.25. In two of these cases, the distribution is shown to
provide a more accurate description of global tumbling
than the isotropic distribution (� = 0.02). In the case
of the G-CSF helical bundle (� = 0.49), the error
measures (εd and εa) are less than 2% for all diffusion
tensor orientations considered. This demonstrates that
the important class of helical bundle proteins can be
analyzed accurately. Based on the theoretical distribu-
tions examined, similar results are expected for other
protein classes with anisotropic distributions of N-H
bond vectors.

We have also demonstrated the efficacy of reducing
measurement error as an alternative to simultaneous
analysis of 13Cα relaxation data, and have described
the trade-offs associated with filtering out approxi-
mation error. In all cases examined here, reduction
of measurement error provides significant improve-
ment in the calculated parameters, and in some cases
improves the estimates as much as the removal of
structural error. Reduction of measurement error in the
relaxation data can more easily be accomplished than
removal of intrinsic errors in the structure. The current
pace of improvements in NMR technology, such as
development of the cryoprobe, of TROSY-based pulse
sequences, and the availability of higher field strengths
indicates that the reduction of measurement error will
be an increasingly effective avenue for improving the
accuracy of global and internal parameters of motion
derived from analysis of 15N relaxation measurements.
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